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Raphaël Chetrite,1 Jean-Yves Delannoy1 and Krzysztof Gawȩdzki1,2
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The Kraichnan flow provides an example of a random dynamical system accessible
to an exact analysis. We study the evolution of the infinitesimal separation between
two Lagrangian trajectories of the flow. Its long-time asymptotics is reflected in the
large deviation regime of the statistics of stretching exponents. Whereas in the flow
that is isotropic at small scales the distribution of such multiplicative large deviations
is Gaussian, this does not have to be the case in the presence of an anisotropy. We
analyze in detail the flow in a two-dimensional periodic square where the anisotropy
generally persists at small scales. The calculation of the large deviation rate function of
the stretching exponents reduces in this case to the study of the ground state energy of an
integrable periodic Schrödinger operator of the Lamé type. The underlying integrability
permits to explicitly exhibit the non-Gaussianity of the multiplicative large deviations
and to analyze the time-scales at which the large deviation regime sets in. In particular,
we indicate how the divergence of some of those time scales when the two Lyapunov
exponents become close allows a discontinuity of the large deviation rate function in the
parameters of the flow. The analysis of the two-dimensional anisotropic flow permits
to identify the general scenario for the appearance of multiplicative large deviations
together with the restrictions on its applicability.
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1. INTRODUCTION

The Kraichnan random ensemble of velocities (23) has been extensively used to
model various phenomena related to turbulent transport both in the inertial interval
of scales that develops at high Reynolds numbers and at moderate Reynolds num-
bers where the viscosity effects play an important role. (16) The passive transport
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of scalar or vector quantities in a velocity field is governed by the Lagrangian flow
describing the evolution of the trajectories of fluid particles. From the mathemati-
cal point of view, such flow provides an example of a random dynamical system(1)

which in the case of the Kraichnan velocities is described by a stochastic dif-
ferential equation. For the Kraichnan flows corresponding to moderate Reynolds
numbers, the methods borrowed from the theory of random dynamical systems
or stochastic differential equations appear to provide important information about
the transport properties of the flows. To start with, the values of the Lyapunov
exponents of the flow, whose existence is asserted by the multiplicative ergodic
theorem, allow to decide whether the flow is chaotic (positive top Lyapunov expo-
nent) or not, leading to different directions of the cascades of passively advected
scalars. (12) More detailed information about the transport properties of the flow
may be extracted from the knowledge of the fluctuations of the exponential stretch-
ing rates around their limiting long-time values equal to the Lyapunov exponents.
In the generic case where all the Lyapunov exponents are different, the statistics of
the stretching exponents may be expected to exhibit at long but finite times a large
deviation regime captured quantitatively by a single function of the vector of the
stretching rates. Since the existence of such multiplicative large deviation regime
is not assured by general mathematical theorems, see Ref. 5 for partial results, it is
interesting to have at our disposal models where it may be established and studied
in detail.

One such example that has been known for some time is the homogeneous
isotropic Kraichnan flow. The corresponding stochastic differential equation has
been studied in the mathematical literature in the eighties and nineties of the
last century. In particular, the Lyapunov exponents have been found in Ref. 25
and 4 but the large deviations have been studied only separately for the top
stretching exponent or for the sum of them. (5) With the regain of interest of
physicists in the Kraichnan model in the mid-nineties, the same stochastic equation
resurfaced as the model for the Lagrangian flow at moderate Reynolds numbers
with the motivations, the accents and the language proper to the turbulence theory
community. (10) In particular, it was realized that many properties of the turbulent
transport require more information about the flow than the spectrum of Lyapunov
exponents and may be expressed in terms of the rate function of the large deviations
of the stretching exponents. Those include the rate of decay of the moments of
advected scalar (3) or of growth of those of the magnetic field(11) or, in compressible
flows, of the density fluctuations, (2) the multifractal properties of long-time density
concentrations (6) and the threshold for the onset of the drag reduction in polymer
solutions. (9) In the homogeneous and isotropic Kraichan flow, the large deviation
regime of the stretching exponents is Gaussian and the corresponding rate function
is a quadratic polynomial. (3,2) Its simple form has permitted to extract analytic
answers for many characteristics features of passive advection in such flows. (16)
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The simplicity of the multiplicative large deviation regime in the homoge-
neous isotropic Kraichnan flow is due to the decoupling of the dynamics of the
stretching exponents from that of the eigen-directions for stretching and contrac-
tion. (3) As a result also the exact distribution of the stretching exponents may be
found analytically in this case as it appears to be related to the heat kernel of the
integrable quantum Calogero-Sutherland Hamiltonian for particles on the line in-
teracting with the attractive pair potential proportional to the function sinh−2 of the
inter-particle distance. (7,19) In the present paper we analyze the two-dimensional
Kraichnan flow in a periodic square often used in numerical simulations. The
large scale anisotropy due to the shape of the flow volume generically persists
on small scales inducing isotropy breaking terms in the distribution of strain that
drives the evolution of the stretching exponents. Due to the presence of such terms,
the stretching exponents dynamics does not decouple anymore from that of the
(unstable) eigen-directions. The Lyapunov exponents may nevertheless be still
computed analytically and their difference expressed in terms of elliptic integrals.
The distribution of the sum of the stretching exponents is still Gaussian for all
times (this is a general fact for the homogeneous Kraichnan flows). As for the rate
function of the large deviations of the difference of the stretching exponents, its
calculation may be reduced to that of the ground-state energy of the integrable one-
dimensional periodic quantum Lamé operator. For general values of the coupling
constant, the eigenvalues of the latter may be found by numerical diagonalization
of infinite tridiagonal matrices. (14) Those matrices reduce to finite ones at integer
values of the coupling and for the lowest eigenvalues. Alternatively, the ground
state energy of the Lamé operator may be found by direct numerical integration of
the eigenvalue equation. Both approaches permit to obtain the large deviation rate
function for the stretching exponents that turns out to be non-quadratic although
with quadratic asymptotes. The analysis of the spectral gap of the Lamé operator
permits to assess the time scales at which the multiplicative large deviation regime
sets in. In particular, the divergence of the time scales relative to the multiplicative
central-limit regime when the difference of the Lyapunov exponents tends to zero
accompanies the observed discontinuity of the large deviation rate function in the
anisotropy parameter at the point where the Lyapunov exponents coincide.

The plan of the paper is as follows. In Sect. II, we discuss the relations
between the Lagrangian flow and random dynamical systems introducing the
concepts of the natural invariant measure and of the tangent process and stating
two different definitions of the stretching exponents. In Sect. III we introduce the
Kraichnan ensemble of velocities and discuss how the general concepts considered
before simplify in the homogeneous Kraichnan velocities. We recall briefly the
results about the statistics of the stretching exponents in the isotropic version of
the Kraichnan model. Section IV is the core of the present paper. We discuss
there the Kraichnan flow in a periodic square, the persistence of anisotropy at
small distances, the calculation of the Lyapunov exponents and, finally, the large
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deviations for the stretching exponents, their relation to the Lamé equation, their
non-Gaussianity, and their discontinuity in the anisotropy parameters. The last
section collects our conclusions. We believe that the simple model considered
here allows to identify a general scenario for the occurrence of the multiplicative
large deviations when all the Lyapunov exponents are different and to understand
the mechanism of its failure when some of the Lyapunov exponents get close.

2. LAGRANGIAN FLOW AS A RANDOM DYNAMICAL SYSTEM

2.1. Random Dynamical Systems

We shall start by describing the Lagrangian flow in the language of random
dynamical systems. Let us consider an ensemble of velocities uω

t (r) in a bounded
region V of the d-dimensional space. Here ω is a random parameter belonging
to a probability space � equipped with a probability measure P(dω). � may be
taken as the space of velocity realizations. We shall assume the stationarity of the
velocity ensemble, i.e. the existence of a 1-parameter group of measure preserving
transformations ω �→ ωs of � such that uωs

t (r) = uω
t+s(r). The Lagrangian flow

describing the trajectories of tracer particles carried by the fluid is defined by the
ordinary differential equation

d R

dt
= uω

t (R) . (1)

Under simple regularity assumptions including the spatial smoothness of the ve-
locities uω

t (r), the solutions Rω
t (r) of Eq. (1) parametrized by their time zero

position r define a family of random smooth maps �ω
t of the region V such that

Rω
t (r) = �ω

t (r) with the composition rule

�ω
s+t = �

ωs
t ◦ �ω

s . (2)

In particular, one obtains a 1-parameter group of transformations

(r, ω) �−→ (
�ω

t (r), ωt

)
(3)

of the product space V × � which realizes the flow dynamics.

2.2. Natural Invariant Measure

Note that �
ωs−s(r) is the time zero position of the solution that at time s passes

through r . Suppose that, for continuous functions f on V , the limit

lim
s→−∞

1

|V |
∫

V
f
(
�

ωs−s(r)
)

d r =:
∫

V
f (r) µω(d r) (4)
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exists for almost all ω and defines a random family of probability measures
µω(d r) on V . Note that due to the composition rule (2),

∫

V
f
(
�ω

t (r)
)
µω(d r) =

∫

V
f (r) µωt (d r) . (5)

The measures µω(d r) describe the distribution of the time zero positions of
the Lagrangian trajectories whose initial points were uniformly seeded in the
far past. For incompressible velocities the uniform distribution is conserved
by the flow so that µω(d r) = 1

|V |d r but in the presence of compressibility,
the Lagrangian trajectories develop preferential concentrations and the mea-
sures µω(d r) tend to be singular and supported by lower dimensional random
attractors.

From the random measures µω(d r) one may synthesize a measure
M(d r, dω) on the product space V × � defined by the relation

∫

V ×�

f (r, ω) M(d r, dω) =
〈 ∫

V
f (r, ω) µω(d r)

〉

where 〈··〉 denotes the expectation w.r.t. the probability measure P(dω). Note
that due to the property (5),

∫

V ×�

f
(
�ω

t (r), ωt

)
M(d r, dω) =

∫

V ×�

f (r, ω) M(d r, dω)

so that the measure M(d r, dω) is invariant under the 1-parameter group (3) of
dynamical transformations. We shall call M(d r, dω) the natural invariant mea-
sure of the random dynamical system (1). Below, we shall assume that M(d r, dω)
is ergodic with respect to the group (3), i.e. that functions invariant under the dy-
namics are constant M-almost everywhere.

2.3. Tangent Process

Much information about the Lagrangian flow may be extracted by looking at the
evolution of the separation between two infinitesimally close trajectories. Consider
the Jacobi matrix ∇�ω

t (r) ≡ W ω
t (r) with the entries

W i
j = ∇ j�

ω
t

i (r) .

The matrix W ω
t (r) propagates the infinitesimal separations:

δRω(t ; r) = W ω
t (r) δr .

Note that W ω
0 (r) = Id and that W ω

t (r) satisfies the linear differential equation

dW

dt
= Sω

t W (6)
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with (Sω
t )i

j = ∇ j uω
t

i (Rω
t (r)) equal to the matrix elements of the strain along the

Lagrangian trajectory. We shall call W ω
t (r) the tangent process. In studying it

below, Eq. (6) will play a crucial role. Note that the composition rule (2) implies
that

W ω
s+t (r) = W ωs

t

(
�ω

s (r)
)

W ω
s (r) .

In particular,

W ω
−t (r) = W ω−t

t

(
�ω

−t (r)
)−1

. (7)

We shall be interested in the statistical properties of the d × d matrices
W ω

t (r) for fixed but large t with (r, ω) sampled according to the natural invariant
measure M(d r, dω). As for any real invertible d × d matrix, one may decompose

W = O ′ diag[eρ1 , . . . , eρd ] O (8)

with a diagonal positive definite matrix sandwiched in between orthogonal ones.
One may demand that the stretching exponents ρi = ρω

i t (r) given by half the
logarithm of the eigenvalues of the matrices W T W and W W T , be ordered so that
ρ1 ≥ · · · ≥ ρd . They carry an important part of the information about the tangent
process. The joint probability distribution function (PDF) of the time t stretching
exponents is given by the formula:

Pt (ρ) =
∫

V ×�

d∏

i=1

δ
(
ρi − ρω

i t (r)
)

M(d r, dω) .

Note the relation

ρω
i −t (r) = −ρ

ω−t

d−i+1t

(
�ω

−t (r)
)

between the forward and the backward exponents that follows from Eq. (7). The
invariance of the natural measure under the 1-parameter dynamics (3) implies then
that

P−t (ρ1, . . . , ρd ) = Pt (−ρd , . . . ,−ρ1) .

2.4. Multiplicative Ergodic Theorem and Multiplicative

Large Deviations

The main general result about dynamical systems, the multiplicative ergodic the-
orem of Oseledec, (26) see also Ref. 27, states that under mild assumptions, the
limits

lim
t→±∞

1

t
ln(W T W )ωt (r) =: �ω

±(r)
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exist for M-almost all (r, ω). Besides,

�ω
±(r) = Oω

±(r) diag[λ1, · · · , λd ] Oω
±(r)T (9)

where λ1 ≥ · · · ≥ λd are the Lyapunov exponents that, due to the ergodicity
assumption, are (r, ω)-independent. In particular, λi are the limits when t → ∞
of the ratios ρω

i t (r)/t for M-almost all (r, ω).
When all Lyapunov exponents are different, one may expect that for large but

finite time the distribution of the stretching exponents takes for ρ1 > · · · > ρd

the large deviation form: (3,19)

Pt (ρ) ∝ e−t H (ρ1/t,...,ρd/t) (10)

with a convex rate function H attaining its minimal value equal to zero at the
vector λ of the Lyapunov exponents. In particular, if H is regular around λ

one would obtain, as a corollary, the multiplicative central limit result stat-
ing that 1√

t
(ρ t − λt) tends when t → ∞ to the vector of normal variables

with the inverse covariance given by the second derivative matrix H ′′(λ). To
our knowledge, no general theorems assure existence of the multiplicative
large deviation regime, see Ref. 5 for some partial results. There are, never-
theless, examples of random (and non-random(22)) dynamical systems where
the relation (10) indeed holds. As has been already mentioned in Introduc-
tion, the examination of one of such examples is the main topic of the present
paper.

For time reversible velocity ensembles, i.e. when the velocities uω
t (r) and

−uω
−t (r) have the same distribution, the rate function H possesses the symmetry:

H (−ρd/t, . . . ,−ρ1/t) = H (ρ1/t, . . . , ρd/t) −
d∑

i=1

ρi/t , (11)

see Refs. 2,16. Eq. (11) is an extension, somewhat in the spirit of Ref. 17, of
the fluctuation relations considered originally by Evans-Cohen-Morriss (15) and
Gallavotti-Cohen(18) for the large-deviation rate function of the phase-space con-
traction rate −∑

ρi and established in a setup of random dynamical systems close
to the one of the present paper in Ref. 8.

2.5. Stretching Along the Unstable Flags

We shall call a family F = (Ei )d
i=1 of i-dimensional subspaces

{0} ⊂ E1 ⊂ · · · ⊂ Ed−1 ⊂ Ed = Rd

a flag. An example is provided by the flag F0 composed by the subspaces E0
i

spanned by the first i vectors of the canonical basis of Rd . Clearly, the group



1172 Chetrite et al.

GL(d) acts on the space of flags. The subgroup B ⊂ GL(d) composed of the
upper triangular matrices preserves the flag F0 and the space Fl of all flags, the
flag variety, may be identified with the homogeneous space GL(d)/B = O(d)/D
where D = O(d) ∩ B is the subgroup of the diagonal matrices with entries ±1.
We shall denote by d F the normalized O(d)-invariant measure on Fl.

The flow �ω
t on the volume V induces the flow �ω

t on the product space
V × Fl defined by

�ω
t (r, F) = (

�ω
t (r), W ω

t (r)F
)
.

Mimicking the constructions from Sect. 2.2 of the natural invariant measure, one
may define the measures dσω(d r, d F) on V × Fl by the relation

lim
s→−∞

1

|V |
∫

V ×Fl
f
(
�

ωs−s(r, F)
)

d r d F =:
∫

V ×Fl
f (r, F) σω(d r, d F)

if the limit exists for continuous functions f for almost all ω. Clearly, the
measures σω depend only on the past velocities and the formula

∫

V ×Fl
f
(
�ω

t (r, F)
)
σω(d r, d F) =

∫

V ×Fl
f (r, F) σωt (d r, d F) . (12)

analogous to Eq. (5) holds. Out of the measures σω, one may synthesize a measure

(d r, d F, dω) on the product space V × Fl × � by the relation

∫

V ×Fl×�

f (r, F, ω) 
(d r, d F, dω) =
〈 ∫

V ×Fl
f (r, F, ω) σω(d r, d F)

〉
.

For F = O F0 with O ∈ O(d), consider the Iwasawa decomposition of the
invertible matrix W̃ = W ω

t (r) O :

W̃ = O ′ diag[eη1 , . . . , eηd ] N

with O ′ orthogonal and N upper-triangular with units on the diagonal. The ex-
ponents ηi = ηω

i t (r, F) do not depend on the freedom in the choice of O . We
shall call them the stretching exponents along the flag F . With (r, F, ω) sam-
pled w.r.t. the probability measure 
(d r, d F, dω), they become random variables.
Their joint time t PDF will be denoted Qt (η).

When all the Lyapunov exponents are different then the orthogonal matrices
Oω

±(r) in Eq. (9) are determined modulo the right multiplication by matrices from
D. In particular, Oω

−(r) defines a flag Fω(r) of subspaces Eω
i (r) = Oω

−(r)E0
i

of (less and less) unstable directions of the flow. In this case,
∫

V ×Fl
f (r, F) σω(d r, d F) =

∫

V
f (r, Fω(r)) µω(d r) ,
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i.e. the measure σω(d r, d F) is concentrated in the direction of the flag variety Fl
on the unstable flags. The subspaces Eω

i (r) may be characterized by the property
that for 0 �= e ∈ Eω

i (r) \ Eω
i−1(r),

lim
t→−∞

1

t
ln ‖W ω

t (r)e‖ = λi

with the limit testing the far past asymptotics. The unstable flags Fω(r) depend
only on the velocities at the negative times and are covariant under the 1-parameter
dynamics (3):

W ω
t (r) Fω(r) = Fωt

(
�ω

t (r)
)
.

We shall call the exponents ηω
i t (r) = ηω

i t (r, Fω(r)) the stretching exponents
along the unstable flags.

The exponents ηω
i t (r) are not equal to the stretching exponents ρω

i t (r) in-
troduced previously. In particular, they are not necessarily non-increasing with i
although again the ratios ηω

i t (r)/t tend for M-almost all (r, ω) to the ordered
Lyapunov exponents λi when t → ±∞. Although the PDFs Qt (η) and Pt (ρ)
are, in general, different (in particular, the latter is non-zero only for ordered ar-
guments), we shall see below that the large deviation parts of Pt and Qt are
closely related. In fact, the stretching exponents ηi are more natural objects than
the exponents ρi and, as we shall see in examples, their evolution is often simpler
to describe.

3. LAGRANGIAN FLOW IN THE KRAICHNAN MODEL

3.1. Kraichnan Ensemble of Velocities

The Kraichnan ensemble of d-dimensional velocities uω(t, r) is the Gaussian
random ensemble characterized by vanishing mean and time decorrelated covari-
ance:

〈
uω

t
i (r) uω

t ′
j (r ′)

〉 = δ(t − t ′) Di j (r, r ′) .

In particular, we shall consider a homogeneous ensemble in the d-dimensional
periodic box V of side L with the spatial covariance given by the Fourier series:

Di j (r, r ′) =
∑

k∈ 2π
L Zd

[(1 − ℘)δi j − (1 − ℘d)ki k j ] ei k·(r−r ′) d̂(|k|) , (13)

as often used in numerical simulations. The spectral function d̂ will be assumed
fast decreasing or of compact support so that the resulting covariance and, conse-
quently, almost all velocity realizations uω

t (r) are smooth in space. The simplest
would be to take d̂ supported only on the modes with |k| = 2π

L , i.e. on the
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lowest nontrivial ones. The parameter ℘ in Eq. (13) is called the compressibility
degree. It is equal to the ratio of the covariances 〈(
∇i uω i )2〉/〈
(∇i uω j )2〉 and
is contained between zero and one. Vanishing ℘ corresponds to an incompressible
flow and ℘ = 1 to a gradient one.

The Lagrangian flow in the Kraichnan ensemble of velocities is defined by
the ordinary differential Eq. (1). Because of the white-noise temporal behavior
of the Kraichnan velocities, Eq. (1) becomes, however, a stochastic differential
equation and, in line with more standard notations, will be written in the form

dR = uω
t (r) dt .

In principle, it requires a choice of the stochastic convention, like Itô’s or
Stratonovich’s one, but in the case in question both choices lead to the same
solutions (this is due to the vanishing of ∇r j Di j (0, 0)). As before, one obtains
from the solutions a family �t

ω of smooth random maps. (24)

For the Kraichnan model, the convergence (4) takes place in the L2 norm of
the Gaussian process. Besides, due to the homogeneity of the velocity ensemble,

∫

V ×�

f (r) M(d r, dω) =
〈 ∫

V
f (r) µω(d r)

〉
= 1

|V |
∫

V
f (r) d r . (14)

Similarly, due to the homogeneity,
∫

V ×Fl×�

f (r, F) 
(d r, d F, dω) =
〈 ∫

V ×Fl
f (r, F) σω(d r, d F)

〉

= 1

|V |
∫

V ×Fl
f (r, F) d r χ (d F) (15)

for some probability measure χ (d F) on Fl. Note that averaging Eq. (12) with
respect to the probability measure P(dω) for functions f independent of r , one
infers that

∫

Fl

〈
f
(
W ω

t (r0)F
)〉

χ (d F) = 1

|V |
∫

V ×Fl

〈
f
(
W ω

t (r)F
)〉

d r χ (d F)

=
∫

Fl
f (F) χ (d F) , (16)

i.e. that the measure χ (d F) is invariant under the process W ω
t .

3.2. Tangent Process in Kraichnan Velocities

Further simplifications appear in the statistics of the tangent process W ω
t (r). For

positive t , W ω
t (r) depends only on the velocities at positive times and µω(r)

on the velocities at negative times. The temporal decorrelation of the Kraichnan
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velocities implies then for any function f of invertible d × d matrices and for
t ≥ 0 the factorization

∫

V ×�

f
(
W ω

t (r)
)

M(d r, dω) ≡
〈 ∫

V
f
(
W ω

t (r)
)
µω(d r)

〉

=
〈 ∫

V

〈
f
(
W ω

t (r)
)〉

µω(d r)

〉
= 1

|V |
∫

V

〈
f
(
W ω

t (r)
)〉

d r = 〈
f
(
W ω

t (r0)
)〉

where the last but one equality follows from the relation (14) and the last one is
again due to the homogeneity of the velocity ensemble. We infer that it is enough
to know the distribution of W ω

t (r0) for one fixed r0. This simplifies considerably
the analysis of the statistics of the stretching exponents in the Kraichnan model.

Let us suppose now that f is a function on GL(d) invariant under the
right multiplication of its argument by diagonal matrices with entries ±1 so that
f (W̃ ) for W̃ = W ω

t (r) O depends on O only via the flag F = O F0 (but is
not, in general, a function of W ω

t (r)F only), see Sect. 2.5. Again due to the
decorrelation of velocities at positive and negative times and the relation (15),

∫

V ×Fl×�

f (W̃ ) 
(d r, d F, dω) ≡
〈 ∫

V ×Fl
f
(
W ω

t (r) O
)
σω(d r, d F)

〉

= 1

|V |
∫

V ×Fl

〈
f
(
W ω

t (r) O
)〉

d r χ (d F) =
∫

Fl

〈
f
(
W ω

t (r0) O
)〉

χ (d F) (17)

The last relation permits to simplify the analysis of the statistics of the stretching
exponents along the unstable flags.

3.3. Multiplicative Stochastic Equation for the Tangent Process

For fixed r0, the distribution of the tangent process W ω
t (r0) may be obtained by

solving the multiplicative stochastic equation

dW = Sω
t W dt , (18)

the stochastic version of Eq. (6), with initial condition W0 = Id . The further cru-
cial simplification, due to the time decorrelation and spatial homogeneity of the
Kraichnan velocity ensemble, is that in Eq. (18) one may take (Sω

t )i
j = ∇ j uω

t
i (r0)

instead of (Sω
t )i

j = ∇ j uω
t

i (Rω
t (r0)). In other words, the dependence on the tra-

jectory Rω
t (r0) may be dropped from Sω

t as long as we are interested in the
distribution of W ω

t (r0) for fixed r0, provided we consider the differential Eq. (6)
with the Itô convention (here the convention does matter, see Appendix A in
Ref. 16).
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Summarizing, the strain process Sω
t in Eq. (18) may be taken as the matrix-

valued white noise with mean zero and the covariance
〈(

Sω
t

)i

k

(
Sω

t ′
) j

l

〉 = δ(t − t ′) ∇rk ∇r ′l Di j (0, 0) =: δ(t − t ′) Ci j
kl . (19)

For the spatial velocity covariance Di j (r, r ′) given by the Fourier series (13),

Ci j
kl =

∑

�k∈ 2π
L Zd

[(1 − ℘)δi j − (1 − ℘d)ki k j ]kkkl d̂(|�k|)

= 2α δ
i j
kl + β (δi

kδ
j
l + δi

l δ
j
k ) + γ δi jδkl (20)

where ki ≡ ki and δ
i j
kl is equal to 1 if i = j = k = l and to zero otherwise. The

compressibility degree

℘ = 〈(tr Sω)2〉
〈tr SωT Sω〉 = 2α + (d + 1)β + γ

2α + 2β + dγ
.

The positivity of the covariance imposes the inequalities

γ ≥ |β| , 4α + (d + 2)β + 2γ ≥ d|β| .
We shall exclude the trivial case α = β = γ = 0. The case of vanishing α

corresponds to the isotropic situation when the distributions of Sω and of O Sω OT

coincide for any orthogonal matrix O . The α-term breaks the O(d)-invariance
of the distribution of Sω to the discrete subgroup of the symmetries of a cube. It
is the source of a small scale anisotropy that occurs generically in the Kraichnan
flow in a periodic box. Indeed, vanishing of α requires a fine tuning of the
spectral density d̂(|k|). For example, when d̂ is non-zero only for |k| = 2π

L then
necessarily α �= 0.

3.4. Generator of the Tangent Process

The generator of the process Wt satisfying stochastic equation Eq. (18), i.e. the
operator L such that for any regular function f on the group GL(d),

d

dt
〈 f (W )〉 = 〈(L f )(W )〉 ,

is given by the formula

L = 1

2

d∑

i, j,k,l,
n,m=1

(
2α δ

i j
kl + β

(
δi

kδ
j
l + δi

lδ
j
k

) + γ δi jδkl

)
W k

m W l
n ∂W i

m
∂W j

n

= α

d∑

i=1

(
E i

i

)2 + 1

2
(β + γ )E2 − 1

2
γJ 2 + 1

2
βD2 − (

α + 1

2
(d + 1)β + 1

2
γ
)
D ,

(21)
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where, for Ei
j denoting the basic matrices with the matrix elements (Ei

j )
k
l =

δikδ jl ,
(
E j

i f
)
(W ) = d

ds
|s=0 f

(
e−s Ei

j W
) = −

∑

k

W j
k∂W i

k
f (W ) , E2 =

∑

i, j

E j
i E i

j ,

J 2 = − 1

2

∑

i, j

(
E j

i − E i
j

)2
, D = d

ds
|s=0 f (es W ) = −

∑

i

E i
i .

Note that E2 is the quadratic Casimir of gl(d), J 2 the one of so(d) and D
the generator of the dilations. Formula (21) goes back to Ref. (28) where it was
discussed for the isotropic incompressible case. For any values of the parameters,
the generator L commutes with the right regular action

(RM f )(W ) = f (W M)

of GL(d) on functions on itself.

3.5. Stretching Exponents in the Isotropic Case

The isotropic case with α = 0 has been treated in Refs. 2, 3, see also Refs. 7, 28.
Here L commutes also with the left action of O(d) given by

(L O f )(W ) = f (O−1W ) .

In particular, L preserves the space of functions invariant under the left and
right action of O(d), i.e. functions f (ρ) that depend on W only through the
stretching exponents, see Eq. (8). In other words, the stretching exponents evolve
independently of the angles of the O(d) matrices in the decomposition (8). On
functions f (ρ), the generator L reduces to the operator

Lρ = β+γ

2

(
d∑

i=1

∂2

∂ρ2
i

+
∑

i �= j

coth(ρi − ρ j )
∂

∂ρi

)

+ β

2

( d∑

i=1

∂

∂ρi

)2
− (d+1)β+γ

2

d∑

i=1

∂

∂ρi
.

The right hand side is the generator of the diffusion process ρ t satisfying the
stochastic differential equations (3)

dρi = β+γ

2

∑

j �=i

coth(ρi − ρ j )dt − (d+1)β+γ

2
dt + ζi t dt (22)

where ζ t is the white noise with the covariance

〈ζi t ζ j t ′ 〉 = [(β + γ )δi j + β] δ(t − t ′) .
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The time t PDF Pt (ρ) may be expressed in terms of the heat kernel of the
Calogero-Sutherland Hamiltonian. (7,19) The Lyapunov exponents are given by
Refs. 4, 25.

λi = β+γ

2
(d − 2i + 1) − (d+1)β+γ

2

and are all different. The large deviation form of Pt (ρ) is easy to obtain by the
following heuristic considerations. (3) Since |ρi − ρ j | for i �= j grows approxi-
mately linearly with time, at long times coth(ρi − ρ j ) ≈ ±1 and the operator Lρ

should reduce to the asymptotic form

Las
ρ = β+γ

2

d∑

i=1

∂2

∂ρ2
i

+ β

2

(
d∑

i=1

∂

∂ρi

)2

+
d∑

i=1

λi
∂

∂ρi
.

Similarly, the stochastic equation (22) simplifies at long times to

dρi = λi dt + ζi t dt

The long-time asymptotics of ρi is now easy to find leading to the large deviation
form (10) of the PDF Pt (ρ) with the quadratic rate function(3,2)

H (ρ/t) = 1

2(β+γ )

[
d∑

i=1

( ρi

t
− λi

)2 − β

(d+1)β+γ

(
d∑

i=1

( ρi

t
− λi

)
)2]

(23)

taking its minimal value at ρ/t = λ and possessing the symmetry (11).
Let us turn now to the stretching exponents ηω

t (r, F) along flags F = O F0.
Since ηi are defined by the Iwasawa decomposition of the matrix W̃ = W ω

t (r) O ,
functions of η may be identified with functions f of W̃ invariant under the
right action of upper-triangular matrices N with units on the diagonal and the left
action by orthogonal matrices O (such functions are necessarily invariant under
the right action by diagonal matrices with entries ±1). The calculation of the
average of f (W̃ )) with respect to the measure 
(d r, d F, dω) is now simplified
by Eq. (17). For fixed r0 and O ∈ O(d), the statistics of W ω

t (r0) O may be found
by solving the Itô stochastic Eq. (18) with the initial condition W0 = O . It follows
that

d

dt

〈
f
(
W ω

t (r0) O
)〉 = 〈

(L f )
(
W ω

t (r0) O
)〉

.

In the isotropic case with α = 0, the generator L preserves the space of function
invariant under the right action by upper-triangular matrices N with units on the
diagonal and under the left action of orthogonal matrices O and reduces on such
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functions to the operator

Lη = β+γ

2

d∑

i=1

∂2

∂η2
i

+ β

2

(
d∑

i=1

∂

∂ηi

)2

+
d∑

i=1

λi
∂

∂ηi

of the form coinciding for all times with the asymptotic form Las
ρ of Lρ . As the

result,

〈
f
(
W ω

t (r0) O
)〉 =

∫
e−tLη(0, η) f (η) dη =

∫
f (η) e−t H

(
η1/t,...,ηd/t

)
dη

∫
e−t H

(
η1/t,...,ηd/t

)
dη

with H given by Eq. (23). In particular, the O-dependence drops out and the
integral over the flag variety Fl on the right hand side of Eq. (17) becomes trivial
(in fact, in the isotropic case, χ (d F) = d F i.e. it is O(d)-invariant measure on
Fl). We infer that the time t PDF Qt (η) of the stretching exponents along the
(unstable) flags is Gaussian for all times:

Qt (η) = e−t H (η1/t,...,ηd/t)

∫
e−t H (η1/t,...,ηd/t) dη

.

In particular, its large deviation form coincides with that for the stretching ex-
ponents ρi except that in the latter case, it is restricted to the region where
ρ1 > · · · > ρd . We shall see below that such coincidence of the large deviation
statistics for ρ and η holds in more general situations.

4. KRAICHNAN FLOW IN A PERIODIC SQUARE

4.1. Generator of the 2d Tangent Process

We shall discuss here the statistics of the solutions of the multiplicative stochastic
Eq. (18) for 2 × 2 matrices with the covariance of the white noise strain Sω

t given
by Eqs. (19) and (20) with d = 2. The overall time scale of the strain is set by

4δ(0)

〈tr SωT Sω〉 = 1

α + β + γ
≡ τ .

The distribution of Sω
t is invariant under the 90◦ rotations and reflections in the

coordinate axis. If O π
4

is the rotation by 45◦, i.e.

O π
4

= 1√
2

(
1 1

−1 1

)
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then S′
t
ω = O π

4
Sω

t OT
π
4

has the similar distribution to that of Sω
t but with parame-

ters

α′ = −α , β ′ = α + β , γ ′ = α + γ

Note that τ ′ = τ , 2γ ′ + α′ = 2γ + α and that the compressibility degree is the
same for both sets of the parameters. We shall call the ratio

κ = |α|τ = |α′|τ ′

the anisotropy degree. It measures the difference between the covariances of
the the processes Sω

t and S′
t
ω relative to 〈tr SωT Sω〉 and it is contained between

zero and one. We shall use the dependence on κ to measure the influence of the
anisotropy on the distribution of the tangent process Wt . For Wt solving Eq. (18),
the distribution of W ′

t = O π
4
Wt OT

π
4

will coincide with that of the solution of
Eq. (18) for the primed values of the parameters. As the result, the distribution
of the stretching exponents ρω

t (r) as well as that of ηω
t (r) for the two sets of

parameters are identical. Below, we shall then restrict ourselves to the case with
α ≥ 0.

The parametrization (8) takes in two dimensions the form:

W =
(

cos φ

2 sin φ

2

− sin φ

2 cos φ

2

) (
eρ1 0

0 eρ2

) (
cos ψ sin ψ

− sin ψ cos ψ

)

(we may assume that det W = 1). Hence functions of W may be viewed as
functions of two angles and the stretching exponents and satisfying the relations

f (φ, ρ1, ρ2, ψ) = f
(
φ + π, ρ2, ρ1, ψ − π

2

)
,

f (φ, ρ1, ρ2, ψ) = f (φ, ρ1, ρ2, ψ + 2π )

that permit to restrict the parameters to the region ρ1 ≥ ρ2 and 0 ≤ φ,ψ ≤ 2π .
For the generator of the tangent process given by Eq. (21) one obtains the following
complicated expression:

L = 1

2
α[∂ρ1 + ∂ρ2 ]2

+ 1

2
α[2 sin φ coth(ρ1 − ρ2) ∂φ − cos φ (∂ρ1 − ∂ρ2 ) − sin φ sinh−1(ρ1 − ρ2) ∂ψ ]2

+ 1

2
(β + γ )[∂ 2

ρ1
+ ∂ 2

ρ2
+ 2 sinh−2(ρ1 − ρ2) ∂2

φ + 1

2
sinh−2(ρ1 − ρ2) ∂2

ψ

− 2 cosh(ρ1 − ρ2) sinh−2(ρ1 − ρ2) ∂φ∂ψ + coth(ρ1 − ρ2) (∂ρ1 − ∂ρ2 )]

+ 2 γ ∂2
φ + 1

2
β[∂ρ1 + ∂ρ2 ]2 − 1

2
(2α + 3β + γ ) [∂ρ1 + ∂ρ2 ] . (24)

L is self-adjoint in the L2 scalar product with the measure e−ρ1−ρ2 sinh |ρ1 −
ρ2|dφdρ1dρ2dψ . Note that L commutes separately with the translation of φ by
π , with permutation of ρi and with the arbitrary translations of ψ . Since at the
end we shall be interested in the distribution of the (ordered) stretching exponents,
we may right away restrict ourselves to the sector of functions that are periodic in
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φ of period π , even under the interchange of ρi and independent of ψ . Upon
setting

1

2
(ρ1 + ρ2) ≡ r , ρ1 − ρ2 ≡ ρ

L reduces in the action on ψ-independent functions to the operator Lr + Lφρ

with

Lr = 1

4
(2α + 3β + γ ) ∂2

r − 1

2
(2α + 3β + γ ) ∂r , (25)

Lφρ = 2α
[

sin φ coth ρ ∂φ − cos φ ∂ρ

]2 + 2γ ∂2
φ

+ 1

2
(β + γ )

[
2 ∂2

ρ + 2 sinh−2 ρ ∂2
φ + 2 coth ρ ∂ρ

]
. (26)

It follows that at all times the processes rt and (ρt , φt ), starting at r0 = 0 = ρ0

and φ0 = 0, are independent.

4.2. Sum of Lyapunov Exponents

The PDF of rt takes for all times the Gaussian large deviation form since Lr has
constant coefficients:

Pt (r ) = 1
√

π (2α + 3β + γ )t
e−t Hr (r/t) (27)

with the quadratic rate function

Hr (r/t) =
(
r/t + 1

2 (2α + 3β + γ )
)2

2α + 3β + γ
.

In particular, when t → ∞, the PDF of r concentrates at r
t = − 1

2 (2α + 3β + γ )
which gives the half of the sum of the Lyapunov exponents:

λ1 + λ2 = −(2α + 3β + γ ) . (28)

Note that if one normalizes the Lyapunov exponents by multiplying them by the
overall time scale τ = (α + β + γ )−1 then one obtains the relation

(λ1 + λ2)τ = −2℘ (29)

stating that the normalized sum of the Lyapunov exponents is directly tied to the
compressibility degree.

The Evans-Cohen-Morriss-Gallavotti-Cohen symmetry (11) involves here
only the large deviations of rt and reduces to the identity

Hr (−r/t) = Hr (r/t) − 2r/t . (30)
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4.3. Asymptotic Form of the (ρ, φ)-Process

It remains to find the large-time form of the joint PDF of φ and ρ. Unlike in the
isotropic situation, the evolution of ρ does not decouple from the angle φ and
both have to be treated at the same time. Recall that we may restrict ourselves to
the sector of functions of period π in φ and even in ρ so that we may consider
only ρ ≥ 0 (i.e. ρ1 ≥ ρ2) imposing the appropriate boundary condition at ρ = 0
(recall that L acts at smooth functions on GL(d)). At long times, ρ/t will still
concentrate at a single value equal to the difference of the Lyapunov exponents.
Anticipating the latter to be strictly positive (except in the case when β = γ = 0
treated in Sect. 4.I), we infer that at large t the process ρt will take predominantly
large values ∝ t . Consequently, we should be able to replace coth ρ by 1 in the
expression (26) for the generator Lφρ and drop the term with sinh−2 ρ reducing
Lφρ to the asymptotic form:

Las
φρ = 2α

[
sin φ ∂φ − cos φ ∂ρ

]2 + 2γ ∂2
φ + (β + γ )

[
∂2
ρ + ∂ρ

]
. (31)

Note on the margin that under a similar transformation applied to operator L
of Eq. (24), all terms involving the angle ψ drop out implying that ψ becomes
frozen at long times, in agreement with the Oseledec theorem. With an appropriate
boundary conditions at ρ = 0, the operator Las

φρ is self-adjoint with respect to
the L2 scalar product with the measure eρdρdφ. The restriction to ρ ≥ 0 will
not, however, effect the large deviation form of the PDF of ρ. In what follows, we
shall then simplify the things considering the operator Las

φρ as acting on functions
of ρ defined on the whole line, restricting ρ to positive values only at the very
end.

Although Las
φρ still does not preserve the subspace of functions that depend

only on ρ, it does preserve the one of functions that depend only on φ. Hence
the evolution of φ becomes at long times independent of that of ρ although
the opposite is not true. More specifically, the angle φ undergoes at long time a
diffusion on the circle of circumference π whose generator

Las
φ = 2α

[
sin φ ∂φ

]2 + 2γ ∂2
φ (32)

is obtained by restricting Las
φρ to functions independent of ρ. Such diffusion

process converges exponentially fast (we shall find the rate of the exponential
convergence below) to a stationary state. The stationary density

χ (φ) =
[
γ + α sin2 φ

]−1/2

∫ π

0

[
γ + α sin2 ϕ

]−1/2
dϕ

. (33)

is the unique positive normalized solution of period π of the equation

Las
φ

†
χ (φ) = (

2α[∂φ sin φ]2 + 2γ ∂2
φ

)
χ (φ) = 0 .
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4.4. Difference of Lyapunov Exponents

The difference of the Lyapunov exponents may be found now by applying the
following strategy. Suppose that there exists a smooth periodic function f (φ) of
period π such that

Las
φρ (ρ + f (φ)) = λ = const. (34)

It follows that

d

dt

〈
ρ
〉 = λ − d

dt

〈
f (φ)

〉 −→
t→∞ λ

with the exponentially fast convergence. We infer then that λ is equal to the mean
asymptotic rate of change of ρ that, in turn, is equal to the difference of the
Lyapunov exponents. Identity (34) may be rewritten in somewhat more explicit
form as

2α sin2 φ + β + γ + Las
φ f (φ) = λ .

Integrating the latter equality against χ (φ), we obtain the relation

λ =
∫ π

0

[
β + γ + 2α sin2 ϕ

]
χ (ϕ) dφ (35)

that fixes the value of λ. It is easy to see that Eq. (35) is also a sufficient condition
for the existence of the function f (φ) satisfying condition (34). Substituting the
explicit expression (33) for χ (φ), we infer that

λ1 − λ2 = β − γ + 2

∫ π

0 [γ + α sin2 ϕ]1/2 dϕ
∫ π

0 [γ + α sin2 ϕ]−1/2 dϕ
. (36)

Recall that γ ≥ |β| and 2α + 2β + γ ≥ |β| and that we have assumed that
α ≥ 0. It follows that λ1 − λ2 ≥ β + γ ≥ 0 and at least one of the last inequalities
is sharp unless β = γ = 0. Hence λ1 > λ2 if β + γ > 0 which is consistent with
the assumption that, typically, ρ becomes large for long times. The integrals are

given by the elliptic functions K (k) and E(k) with the modulus k =
√

α
α+γ

:

∫ π

0 [γ + α sin2 ϕ]1/2 dϕ
∫ π

0 [γ + α sin2 ϕ]−1/2 dϕ
= (α + γ )

E(k)

K (k)
.

Fig. 1 depicts the normalized Lyapunov exponents λiτ for τ = (α + β + γ )−1

as functions of the anisotropy degree κ = |α|τ ,

λ1τ = − 1 + 3 − 2℘ + κ

2

E
(√

2κ
3−2℘+κ

)

K
(√

2κ
3−2℘+κ

) ,
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Fig. 1. (Color online) Normalized Lyapunov exponents λ1τ and λ2τ as functions of anisotropy
degree κ = |α|τ for three values of the compressibility degree ℘.

λ2τ = 1 − 2℘ − 3 − 2℘ + κ

2

E
(√

2κ
3−2℘+κ

)

K
(√

2κ
3−2℘+κ

) ,

for three values of the compressibility degree ℘ = 0, ℘ = 1
2 and ℘ = 1. Note

that λ1τ decreases and λ2τ increases with κ at constant compressibility degree
℘, with the sum of the two fixed to −2℘, see Eq. (29). The incompressible
system stays always chaotic (i.e. with positive top Lyapunov exponent) and this is
also true for sufficiently small compressibility degree. For ℘ slightly below 1

2 ,
however, an increase of κ may kill chaos. For ℘ ≥ 1

2 the system is never chaotic.
For ℘ = 1, the tendency of anisotropy to bring the Lyapunov exponents closer
attains its maximum with the two Lyapunov exponents coinciding for the extreme
anisotropy when Sω

t is a diagonal matrix with independent equally distributed
entries representing independent stretching and contraction along the coordinate
axes (or when it is the 45o rotation of such a matrix).

4.5. Large Deviations for Exponents ρ

The joint PDF of φt and ρt takes the form of the heat kernel

Pt (φ, ρ) = e t Lφρ (0, 0; φ, ρ)

and for large time t should be well approximated by the modified heat kernel

Pas
t (φ, ρ) = e t Las

φρ (0, 0; φ, ρ) .

In the latter, the ρ-contribution may be diagonalized by the Fourier transform so
that we get

Pas
t (φ, ρ) =

∫

C
e−νρ + t (β+γ )ν(ν+1) e t Lν (0, φ)

dν

2π i
(37)
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where the integration is over a line Re ν = −1/2 parallel to the imaginary axis
and

Lν = 2α
[

sin φ ∂φ − ν cos φ
]2 + 2γ ∂2

φ

is a second order differential operator acting on periodic functions of period π .
For Re ν = −1/2, Lν is self-adjoint with respect to the L2 scalar product with the
measure dφ. As we shall see below, the contour C of integration in Eq. (37) may
be moved to any line parallel to the imaginary axis. Operator Lν may be viewed as
a perturbation of the generator Las

φ of Eq. (32) with which it coincides for ν = 0.
By a rescaling, a similarity transform and the elliptic change of variables

φ �−→ u(φ) =
∫ φ

0

[ α + γ

γ + α sin2 ψ

]1/2
dψ ,

Lν is put into the form of a one-dimensional Schrödinger operator:

− 1

2(α+γ )
e−ν h(φ) Lν eν h(φ) = − d2

du2
+ ν(ν + 1) V (φ(u)) (38)

for the function

h(φ) = 1

2
ln

[
γ + α sin2 φ

]

and the attractive potential depicted on Fig. 2,

V (φ(u)) = γ

α + γ
− γ

γ + α sin2 φ
= −k2 cn2(u, k) = −k2 + k2 sn2(u, k) ,

where sn(u, k) and cn(u, k) are the Jacobi elliptic function corresponding to

the modulus k =
√

α
α+γ

. The Schrödinger operator of Eq. (38) acts on periodic

functions of u with the period 2K (k) (that corresponds to the period π in φ).
Up to a constant, it is equal to the Lamé integrable operator in the Jacobian form,
see Refs. 14, 30,

Hν = − d2

du2
+ ν(ν + 1) k2 sn2(u, k) .

We thus obtain the relation

Pas
t (φ, ρ) =

∫

C
e−νρ + t (2α+β+γ )ν(ν+1) + ν(h(0)−h(φ)) e−2(α+γ )t Hν (0, u(φ))

du(φ)

dφ

dν

2π i

(39)

Note that by the Feynman-Kac formula, for ν = ν1 + iν2 with ν1,2 real, the
absolute value of the integrand on the right hand side is bounded by

e−ν1ρ + t (β+γ )
[
ν1(ν1+1)−ν2

2

]
+ ν1(h(0)−h(φ)) e

−2(α+γ )t
(
− d2

du2 +[ν1(ν1+1)−ν2
2 ]V (φ(u))

)

(0,u(φ))
du(φ)

dφ
.
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Fig. 2. (Color online) V (φ(u)) as a function of u
2K (k) for, from middle top to bottom for u = 0,

k2 = α
α+γ

= 0.2, 0.6, 0.9 and 0.99999.

For γ > 0, the last expression tends to zero when ν2 → ±∞ (uniformly on
bounded intervals of ν1) since β + γ ≥ 0 and V is attractive. It follows then
that the contour of integration C on the right hand side of Eq. (39) may be, as
announced, moved to any line parallel to the imaginary axis. Let us consider the
spectral decomposition

e−2(α+γ )t Hν =
∞∑

n=0

e−2(α+γ )t Eν,n |�ν,n〉〈�ν,n| (40)

with the eigenvalues Eν,n = Eν,n(k2) of Hν ordered in a non-decreasing way for
ν real. For large t , the dominant contribution comes from the ground state �ν,0

of Hν . In particular, for the vanishing coupling constant, �0,0 = (2K (k))−1/2,
E0,0 = 0, E0,1 = E0,2 = π2 K (k)−2 and e t H0 (0; u(φ)) converges at long times
to (2K (k))−1 with the exponential rate equal to 2π2(α + γ )K (k)−2. Note that
this rate goes to zero when γ tends to zero since the half-period K (k) diverges
in this limit.

Insertion of the expansion (40) into the expression (39) permits to extract the
large deviation form of the PDF of ρt from the ground state contribution:
∫ π

0
Pas

t (φ, ρ) dφ ∝
∫

C
e−t [νρ/t − (2α+β+γ )ν(ν+1) + 2(α+γ ) Eν,0(k2)] dν

2π i
∝ e−t Hρ (ρ/t)

(41)

with the rate function

Hρ(ρ/t) = max
ν

[
νρ/t − (2α + β + γ )ν(ν + 1) + 2(α + γ ) Eν,0(k2)

]
(42)
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defined for ρ/t > 0. We shall denote by νmax the value of ν where the maximum
is attained (the maximum over real ν corresponds to a minimum of the real part
along the axis parallel to the imaginary one). Note that only the ground state
energy of operator Hν contributes to the rate function Hρ . The ground state
wave function enters the prefactors in the long time asymptotics of the PDF of
ρ. Let us check that when t → ∞ then ρ/t concentrates at the value equal
to the difference of the Lyapunov exponents as given by Eq. (36). To this end,
we must find the minimum of Hρ(ρ/t). The stationarity condition implies the
equations

ν = 0 , ρ/t = (2α + β + γ )(2ν + 1) − 2(α + γ ) ∂ν Eν,0(k2) (43)

and the minimizing value of ρ/t is given by the relation

(ρ/t)min = 2α + β + γ − 2(α + γ ) ∂ν Eν,0(k2)|ν=0 .

The derivative of the ground state energy may be calculated by the first order
perturbation theory:

∂ν Eν,0|ν=0 = 〈�0,0|k2 sn2(·, k)|�0,0〉 = k2 + 1

2K (k)

∫ 2K (k)

0
V (φ(u) du

= 1 − 1 − k2

2K (k)

∫ π

0

[
1 − k2 cos2 φ]−3/2 dφ = 1 − E(k)

K (k)

where the last equality follows from the elliptic identity 2.584.37 in Ref. (21).
We obtain this way the relation

(ρ/t)min = β − γ + 2(α + γ )
E(k)

K (k)

which agrees with Eq. (36) for λ1 − λ2 ≡ λ.

A closed expression for the second derivative of the rate function Hρ may
be obtained by differentiating twice the defining relation (42):

H ′′
ρ (ρ/t) = dνmax

d(ρ/t)
= 1

2
(
2α + β + γ − (α + γ ) ∂2

ν Eν,0(k2)|ν=νmax

) (44)

since νmax is related to ρ/t by the second of Eqs. (43) whose differentiation leads
to the last equality. In particular,

H ′′
ρ (λ) = dνmax

d(ρ/t)

∣∣∣
λ

= 1

2
(
2α + β + γ − (α + γ ) ∂2

ν Eν,0(k2)|ν=0
) (45)
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By the second order perturbation expansion,

∂2
ν Eν,0|ν=0 = 2∂ν Eν,0|ν=0 − 2

∞∑

n=1

E−1
0,n |〈�0,0|k2 sn2(·, k)|�0,n〉|2

= 2 − 2
E(k)

K (k)
− k4 K (k)2

π2

∞∑

n=1

n−2 fn(k)2 (46)

with the Fourier coefficients fn(k) = ∫ 1
−1 cos(πnx) sn2(K (k)x, k) dx . H ′′

ρ (λ) is
equal to the inverse variance of the normal random variable obtained by the central
limit lim

t→∞ (ρt − λ t)/
√

t .

Combining Eqs. (42) and (27), one obtains the following form of the large
deviations rate functions for the stretching exponents:

H (ρ1/t, ρ2/t) = ( ρ1

t + ρ2

t + 2α + 3β + γ )2

4(2α + 3β + γ )

+ max
ν

[
ν
( ρ1

t
− ρ2

t

) − (2αβ + γ )ν(ν + 1)

+2(α + γ ) Eν,0
( α

α+γ

)]
. (47)

for ρ1 > ρ2. When α = 0 (the isotropic case) then Eν,0 = 0 and the large
deviation rate function (47) reduces to the one given by the two-dimensional
version of expression (23).

4.6. Large Deviations for Exponents η

Similarly as in the isotropic case, the PDF of the stretching exponents ηt along
the unstable flags may be obtained from Eq. (17) by considering the Iwasawa
decomposition

W̃ =
(

cos φ

2 sin φ

2

− sin φ

2 cos φ

2

) (
eη1 0

0 eη2

) (
1 x

0 1

)
. (48)

of the solutions of the linear stochastic Eq. (18) with the initial condition given by
a (random) rotation matrix. In the parametrization (48) and upon the substitution
1
2 (η1 + η2) = r , η1 − η2 = η, the generator L of the tangent process takes the
form:

L = 1

2
(2α + β + γ )

[ 1

2
∂2

r + 2 cos2 φ ∂2
η + 2 sin2 φ ∂2

φ + 2 sin2 φ e−2η∂2
x

− 2 sin(2φ) ∂η∂φ + 2 sin(2φ) e−η∂η∂x − 4 sin2 φ eη∂φ∂x + 2 sin2 φ ∂η

+ sin(2φ) ∂φ − 2 sin(2φ) e−η∂x

] + 1

2
(β + γ )

[
2 sin2 φ ∂2

η − 2 sin2 φ ∂2
φ

+ 2 cos2 φ e−2η∂2
x + 2 sin(2φ) ∂η∂φ − 2 sin(2φ) e−η∂η∂x − 4 cos2 φ e−η∂φ∂x

+ 2 cos2 φ ∂η − sin(2φ) ∂φ + 2 sin(2φ) e−η∂x

]

+ 2γ ∂2
φ + 1

2
β∂2

r − 1

2
(2α + 3β + γ )∂r .
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It is self-adjoint in the L2 scalar product with the measure e−2r+ηdφdr dηdx .
In the action on functions independent on x , L reduces to the sum Lr + Lφη

with Lr given by Eq. (25) and

Lφη = 2α
[

sin φ ∂φ − cos φ ∂η

]2 + 2γ ∂2
φ + (β + γ )

[
∂2
η + ∂η

]
. (49)

Note that the operator Lφη has the form identical to the asymptotic form Las
φρ

of Lφρ , see Eq. (31). In principle, it acts now on functions of φ with period 4π

but it preserves the subspace of functions with period π . The evolution of r
decouples from that of φ and η leading to the PDF (27).

As for the joint time t PDF of φ and η, it is related to the heat kernel of
Lφη by the equality

Pt (φ, η) =
∫ π

0
e t Lφη (φ0, 0; φ, η) χ (φ0) dφ0 (50)

obtained from Eq. (17). Indeed, it follows from the relation relation (16) that the
probability measure χ (d F) on the flag variety Fl of the 1-dimensional subspaces
spanned by vectors (cos φ0

2 ,− sin φ0

2 ) has to be proportional to χ (φ0) dφ0 where
the function χ (φ) is the stationary density (33) of the angle φ. Since χ (φ) is
periodic with period π (as a consequence of the invariance of the law of the
tangent process with respect to the rotations by 90o), so must be Pt ( · , η) and
we could restrict the φ0-integration in Eq. (50) to the interval [0, π [. The rest of
the analysis of the large deviations of η runs as for the large deviations of ρ. As
the result, the large deviation rate function for η has the same functional form
(47) as that for ρ except of the absence of the restriction η1 > η2. In particular,
the rate function Hη of the difference η = η1 − η2 of the stretching exponents
coincides with the function Hρ as defined by Eq. (42) on the whole real line rather
than on the half line:

Hη(η/t) = max
ν

[
νη/t − (2α + β + γ )ν(ν + 1) + 2(α + γ ) Eν,0(k2)

]
. (51)

Note that Hη(η/t) + η/(2t) is then an even function of η/t . Indeed, the values of
νmax at which the maximum on the right hand side of Eq. (51) is attained for η/t
and for −η/t are related by the reflection around ν = −1/2. They are smaller
than −1 for η/t < −λ, lie in between −1 and 0 for −λ < η/t < λ and are
positive for η/t > λ. Fig. 3 presents the graph of the maximizing νmax as a
function of (η/t)τ for κ = 0.8 and ℘ = 0.9. We obtain this way the fluctuation
relation that compares the rate function for opposite values of η/t :

Hη(−η/t) = Hη(η/t) + η/t. (52)

It resembles the Evans-Cohen-Morriss-Gallavotti-Cohen relation (30) but is dif-
ferent from it (recall that r and η are independent random variables at all times).
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Fig. 3. (Color online) νmax as a function of (η/t)τ for κ = 0.8 and ℘ = 0.9.

Although η/t may take negative values, Eq. (52) implies that the probability of
such events is exponentially suppressed for large t when λ1 > λ2.

4.7. Properties of the Rate Function Hη

The large deviations rate function Hη is related to the ground state energy Eν,0(k2)
of the Lamé operator Hν for k2 ≡ α

α+γ
by the formula (51). A lot is known about

the eigenvalues and eigenfunctions of Hν . The power series expansions for the
eigenfunctions in an appropriate parametrization may be obtained by solving a re-
cursion relation(30) or by diagonalizing tridiagonal matrices. (14) For ν a positive
integer and the lowest 2ν + 1 eigenvalues, the corresponding matrices become
finite and one obtains as the eigenfunctions the “Lamé polynomials”. The Lamé op-
erator may be diagonalized (for general quasi-momenta) by the Bethe Ansatz (13,20)

that in this case goes back to the work of Hermite (30) in the second half of the
nineteenth century. A simple Maple program computes Eν,0(k2). (29) We also used
a C program to compute Eν,0 by solving directly the eigenvalue equation. Fig. 4
presents the graph of Eν,0(k2) as a function of ν for k2 = 0.2, 0.4, 0.6, 0.8
and 1. For large values of ν, (29)

Eν,0(k2) = |kν| − 1

4
(1 + k2) + O(|ν|−1) .

This leads to the following large |ρ|/t behavior of Hη :

Hη(η/t) = − η

2t
+

(
|η|
2t + √

α(α + γ )
)2

2α + β + γ
− 2α + γ

4
+ O(|η|−1) .
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Fig. 4. (Color online) Eν,0(k2) as a function of ν from bottom to top for k2 = 0.2, 0.4, 0.6, 0.8
and 1.

Note that the left and right asymptotes are parabolas (displaced with each other
along the horizontal axis) and that

H ′′
η (±∞) = 1

2(2α + β + γ )
,

in agreement with Eq. (44) since ∂2
ν Eν,0 tends to zero at large |ν|. Recall that we

have calculated the central-limit inverse variance H ′′
η (λ) before, see Eq. (45), so

that around the minimum,

Hη(η/t) = 1

4

( η

t − λ)2

2α + β + γ − (α + γ )∂2
ν Eν,0(k2)|ν=0

+ O(| η

t
− λ|3)

with ∂2
ν Eν,0 given by Eq. (46). The difference between H ′′

η (±∞) and H ′′
η (λ)

attests to the non-Gaussian character of the large deviations of η. Fig. 5 presents
the behavior of 1

τ
H ′′

η (±∞) and of 1
τ

H ′′
η (λ) for ℘ = 0, 0.7 and 1 as functions

of the anisotropy degree κ = ατ .
The first quantity diminishes with growing κ from the isotropic value 1

2 for
κ = 0 to the extremely anisotropic one equal to 1

4 for κ = 1 whereas the second
one increases starting from the same initial value. It is plausible that for ℘ = 1,
1
τ

H ′′
η (λ) diverges in the limit κ → 1. We infer that the undimensionalized central-

limit covariance 1
τ

H ′′
η (λ) increases with anisotropy and that the probability of

large values of η/t decreases slower than if the rate function Hη were quadratic
with the H ′′

η equal to its central-limit value. Fig. 6 represents the graph Hη
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Fig. 5. (Color online) From bottom to top: 1
τ

H ′′
η (±∞) (the lower curve) and 1

τ
H ′′

η (λ) for ℘ = 0, 0.7
and 1 as functions of the anisotropy degree κ .

together with the large value asymptotes and the quadratic approximation near the
minimum for κ = 0.8 and ℘ = 0.9.

4.8. Time Scales of the Large Deviations Regime

It is interesting to look at the time scales at which the large deviation regime
for the difference ρ or η of the stretching exponents sets in. There were three

Fig. 6. (Color online) τ Hη(x/τ ) as a function of x with the large η asymptotes on the left figure
and the quadratic approximation around the minimum (the curve tighter for large values) for κ = 0.8
and ℘ = 0.9. The vertical lines correspond to η/t = λ.
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Fig. 7. (Color online) The gap in the spectrum of Hν : (a) as a function of ν for, from middle top to
bottom at ν = 0, k2 = 0, 0.2, 0.4, 0.6, 0.8 and 1, (b) as a function of k2 = α

α+γ
for, from top to

bottom, ν = 4, 3, 2, 2 and 0.

approximations involved in reducing the exact PDFs to their large deviation form.
Let us analyze them one by one.

The first approximation consisted in replacing the PDF Pt (φ, ρ) by
Pas

t (φ, ρ) involving the asymptotic form Las
φρ of the generator Lφρ . The asymp-

totic form should set in exponentially fast in time with the rate given by the differ-
ence λ of the Lyapunov exponents. This approximation becomes exact when one
analyzes the difference η of the stretching exponents along the unstable flags.

The second approximation consisted of considering only the contributions of
the ground state of Hν to the kernel of the operator e−2(α+γ )t Hν in Eq. (39) with
the contour integral along C = {Re ν = νmax}. The contributions of the excited
states to that kernel decouple exponentially fast with a rate given by the spectral
gap of 2(α + γ )Hνmax for νmax equal to the value of ν that maximizes the right
hand side of Eq. (42). We obtain this way a continuum of time scales that depend
on ρ/t or on η/t . The plot of the gap Eν,1 − Eν,0 of Hν as a function of ν

for k2 = 0, 0.2, 0.4, 0.6, 0.8 and 1 is given in Fig. 7a. For k2 = 1 the gap is
expected to vanish for −1 ≤ ν ≤ 0 and its small but positive value on the graph is
due to the slowdown in the numerical algorithm. Indeed, as noticed before, the gap
of Hν for ν = 0 or ν = −1 is equal to π2 K (k)−2 and tends to zero when k2

tends to 1 (i.e. when γ approaches 0). For ν < −1 or ν > 0, the limiting value
of the gap when k2 tends to 1 should, however, be positive and increasing with
|ν + 1/2|. Fig. 7b presents the gap as a function of k2 for ν = 0, 1, 2, 3 and 4.
Since the interval |νmax + 1/2| ≤ 1/2 corresponds to ρ/t ≤ λ or to |η/t | ≤ λ,
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we infer that the decoupling of the contributions of the excited states of Hν to the
PDFs of ρ or η on those intervals takes more and more time when γ → 0.

The third approximation in extracting the large deviation form of Pt (ρ) or
Qt (η) consisted in replacing the integral in (41) along the contour C = {Re ν =
νmax} by its saddle point value. This induces the correction to Hρ(ρ/t) whose
leading term comes from the one-loop contribution

1

2t
ln

(2α + β + γ − (α + γ ) ∂2
ν Eν,0|ν=νmax

2α + β + γ − (α + γ ) ∂2
ν Eν,0|ν=0

)
= 1

2t
ln

(
H ′′(λ)/H ′′(ρ/t)

)

and similarly for Hη(η/t). As we noticed at the end of the previous subsection, it
is plausible that for ℘ = 1 , H ′′

ρ (λ) = H ′′
η (λ) diverges in the limit κ → 1 causing

the divergence of the last correction.

4.9. The Case with Equal Lyapunov Exponents

At the end, let us consider the special case of the potential flow with maximal
anisotropy when ℘ = 1 and κ = 1, i.e. when β = γ = 0. In this case the strain
matrix (Sω

t )i
k is diagonal with (Sω

t )1
2 = (Sω

t )2
1 = 0 and

〈(
Sω

t

)1

1

(
Sω

t ′
)1

1

〉 = 2α δ(t − t ′) = 〈(
Sω

t

)2

2

(
Sω

t ′
)2

2

〉
,

〈(
Sω

t

)1

1

(
Sω

t ′
)2

2

〉 = 0 .

The solution of the multiplicative Itô stochastic equation with initial condition
W0 = Id takes the form

Wt = diag
[

e
∫ t

0 (Sω
s )1

1 ds − α t , e
∫ t

0 (Sω
s )2

2 ds −α t
]

and the stretching exponents ρ t are given by the formula

ρ1t = max
(
e
∫ t

0 Sω(s)1
1 ds −α t , e

∫ t
0 Sω(s)2

2 ds − α t
)

ρ2t = min
(
e
∫ t

0 Sω(s)1
1 ds − α t , e

∫ t
0 Sω(s)2

2 ds − α t
)
.

This results in the joint time t PDF

Pt (ρ1, ρ2) = 1

2πα t
e− t

4α ( ρ1
t +α)2

e− t
4α ( ρ2

t +α)2

θ (ρ1 − ρ2)

or, in terms of r ≡ 1
2 (ρ1 + ρ2) and ρ ≡ ρ1 − ρ2 ,

Pt (ρ1, ρ2) = 1

2πα t
e− t

2α ( r
t +α)2

e− t
8α ( ρ

t )2

θ (ρ).

Similarly the stretching exponents ηt along the flags F = O F0, are given
by the Iwasawa decomposition (48) of the matrices W̃ = Wt O with the flags
F = O F0 distributed with respect to the measure χ (d F) on the flag variety Fl
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that is invariant under the process Wt , see Eq. (16). Any such measure has to be
concentrated on the two flags given by the coordinate axis. On obtains then the
formula

η1t = e
∫ t

0 Sω(s)1
1 ds − α t , η2t = e

∫ t
0 Sω(s)2

2 ds − α t

if O F0 is given by the first coordinate axis or the one with interchanged ηi t if
O F0 is given by the second coordinate axis. In any case, the joint t PDF of the
stretching exponents η takes the form

Pt (η1, η2) = 1

4πα t
e− t

4α ( η1
t +α)2

e− t
4α ( η2

t +α)2

or, in terms of r ≡ 1
2 (η1 + η2) and η ≡ η1 − η2 ,

Pt (η1, η2) = 1

4πα t
e− t

2α ( r
t +α)2

e− t
8α ( η

t )2

.

The PDF of rt agrees with that of Eq. (27), i.e. rt/t is the normal variable
with mean −α equal to the half of the sum of the Lyapunov exponents and with
variance α/t . As for ρt/t , it is distributed as an absolute value of the centered
normal variable with variance 4α/t . In particular, the difference of the Lyapunov
exponents vanishes and the large deviation rate function for ρt is quadratic:

Hρ(ρ/t) = 1

8α

(ρ

t

)2
. (53)

Similarly, η/t is a normal variable with mean zero and variance 4α/t and

Hη(η/t) = 1

8α

(η

t

)2
. (54)

The values of the Lyapunov exponents agree with those given by the limiting
values of Eqs. (28) and (36). Recall however, that the non-Gaussianity of the large
deviations, as measured by the difference 1

τ
[H ′′

η (λ) − H ′′
η (±∞)], was increasing

with the growth of the anisotropy degree κ , see Fig. 5. For ℘ = 1, in particular,
1
τ

H ′′
η (λ) was growing with κ whereas 1

τ
H ′′

η (±∞) = 1
2(κ+1) decreased to the

value 1
4 for κ = 1. This seems in contradiction with the results (53) and (54)

with the quadratic large deviations rate functions for ℘ = 1 and κ = 1 with
H ′′

ρ (ρ/t) = H ′′
η (η/t) = τ

4 everywhere and not only at infinity. The solution of the
puzzle lies in the non-uniformity of the large deviation regime when β, γ → 0 and
the two Lyapunov exponents tend to each other. As we have noticed in the previous
subsection, the time scales at which the large deviation regime sets in diverge when
γ → 0 (and, consequently, β → 0 and λ → 0). That could explain why the limit
of H ′′

ρ (λ) = H ′′
η (λ) when γ → 0 is not equal to the value of H ′′

ρ (0) = H ′′
η (0) for

γ = 0.
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Fig. 8. (Color online) Illustration of conjectured point-wise convergence of τ Hη(x/τ ) to x2/8
(diamonds) for x > 0 and to x2/8 − x (crosses) for x < 0. The dotted line corresponds to β = 0 and
γ = α, the solid one to β = 0 and γ = 0.01α.

Numerical calculations, see Fig. 8, seem to indicate, however, that Hρ still
converges point-wise to its form for γ = 0 when γ → 0. Such point-wise con-
vergence when γ → 0 cannot take place for the large deviations rate function
Hη. Indeed, recall that that for γ > 0 it is Hη(η/t) + η/(2t) that is an even
function of η/t whereas for γ = 0, the rate function Hη(η/t) is even itself. The
point-wise convergence of Hη that is a function on the whole real line cannot then
hold. Instead, for negative η/t , the rate function Hη(η/t) should converge when
γ → 0 to Hη(η/t) − η/t . Let us note that the evenness of Hη(η/t) + η/(2t) for
γ > 0 is a consequence of the relations

Pt (φ, η) ≡ e t Lφη (0, 0; η, φ) = eη e t Lφη (φ, η; 0, 0) = eη e t Lφη (φ, 0; 0,−η) .

(55)

The first one follows from the self-adjointness of the operator Lφη with respect to
the measure eη dφdη on the product of the circle by the real line and the second
one from the commutation of Lφη with the translations of η. Recall that the PDF
of η is given by the integral

∫ π

0
e t Lφη (φ, η) dφ
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into which the initial and the final angles do not enter in a symmetric way so that
the equalities (55) do not imply that

∫ π

0
e t Lφρ (0, 0; φ, ρ) dφ = eη

∫ π

0
e t Lφη (0, 0; φ,−η) dφ .

Nevertheless, for γ > 0 the last equality holds if the full PDF of η are replaced
by its large deviation approximation, the angular asymmetry showing up only in
the prefactors related to the ground state eigenfunctions of Hν . On the other hand,
for γ = 0 the angular asymmetry does not decouple from the large deviation form
of the PDF of η and conspires to render the latter even. The lack of point-wise
convergence of Hη to its form for γ = 0 is a reflection of the singular behavior
of the eigenfunctions of Hν when γ → 0.

To summarize, although the distribution of the stretching exponents η still
exhibits large deviation regime when γ = 0, the corresponding rate function is
not equal to the limit of the rate functions for γ > 0 signaling that when two
Lyapunov exponents coincide, the occurrence of the multiplicative large deviation
regime becomes problematic.

5. CONCLUSIONS

We have examined in detail the tangent process W ω
t describing the evo-

lution of infinitesimal separations between Lagrangian trajectories in the two-
dimensional Kraichnan flow in a periodic square. The process W ω

t is driven by
the time decorrelated strain whose distribution is, in general, anisotropic, possess-
ing only the symmetry with respect of the 90o rotations and axes reflections. Our
interest was concentrated on the large deviation regime of the stretching exponents
ρi or ηi that appear in the matrix decompositions W = O ′ diag[eρ1 , eρ2 ] O or
W = O ′ diag[eη1 , eη2 ] N with orthogonal matrices O, O ′ and upper-triangular
N . The anisotropy couples the dynamics of the stretching exponents to the evo-
lution of the matrices O ′, in contrast to the situation in the isotropic case where
the stochastic dynamics of the stretching exponents is decoupled from that of the
matrices O ′ and O or O ′ and N . The stochastic evolution of the matrices O ′

becomes, however, independent, at least at long times, from that of the stretching
exponents, attaining exponentially fast a stationary state. The latter feeds to the
evolution of the stretching exponents in a steady fashion permitting them still to
attain the large deviation regime. The large deviation rate function for the stretch-
ing exponents may be expressed in terms of the ground state energy of an operator
on the group of orthogonal matrices parametrized by the variables conjugate to
the stretching exponents. The contribution of the excited states to the PDF of the
stretching exponents decouples exponentially fast with the rate equal to the gap of
the angular operator. This scenario for the multiplicative large deviations seems
quite general whenever the Lyapunov exponents are all different, at least in the
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homogeneous Kraichnan model. When some of the Lyapunov exponents become
close, some of the time scales for the appearance of the large deviation regime
as well as the prefactors multiplying the exponential large deviation PDF may
diverge.

What is special about the flow on the periodic square is that the operator on
the orthogonal group in question takes form of the integrable periodic Schrödinger
operator of the Lamé type facilitating the calculations. This simplification due to
the hidden integrable structure allowed to obtain closed formulae for the Lyapunov
exponents in terms of elliptic integrals and to analyze the large deviation rate func-
tion with precision. The results of the analysis show that the anisotropy effects
lower the top Lyapunov exponent and increase the lower one (relative to an overall
inverse time scale), with the sum of the two fixed by the compressibility degree
of the flow. The sum of the two stretching exponents is normally distributed
with the covariance again fixed by the compressibility degree. The difference of
the stretching exponents, however, exhibits in the presence of anisotropy non-
Gaussian large deviations. Its central limit covariance grows with anisotropy but
the quadratic large-value asymptotes of the rate function have the top coefficients
that decrease with increasing anisotropy. This non-Gaussian scenario for the mul-
tiplicative large deviations applies, however, only when the Lyapunov exponents
are different. At the extreme anisotropy, when the strain matrix is diagonal with
independent equally distributed entries, the two Lyapunov exponents coincide
and the large deviations for the stretching exponents are Gaussian. We have an-
alyzed in more detail this discontinuous restoration of the Gaussianity of large
deviations.

For the Kraichnan flow in a periodic rectangle, the multiplicative large devia-
tions may be analyzed similarly. The results will be published elsewhere. It remains
an open question whether the Kraichnan flow in a three-dimensional periodic box
possesses a hidden integrable structure that would permit to extend the analysis of
the present paper to that case.
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l’IHÉS 50:275–320 (1979).

28. B. Shraiman and E. Siggia, Symmetry and scaling of turbulent mixing. Phys. Rev. Lett. 77:2463–
2466 (1996).
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